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Our Mission 
The Wales Centre for Public Policy helps to improve policy making and public services by supporting 

ministers and public service leaders to access and apply rigorous independent evidence about what 

works.  It works in partnership with leading researchers and policy experts to synthesise and mobilise 

existing evidence and identify gaps where there is a need to generate new knowledge.   

The Centre is independent of government but works closely with policy makers and practitioners to 

develop fresh thinking about how to address strategic challenges in health and social care, education, 

housing, the economy and other devolved responsibilities. It: 

• Supports Welsh Government Ministers to identify, access and use authoritative evidence and 

independent expertise that can help inform and improve policy; 

• Works with public services to access, generate, evaluate and apply evidence about what 

works in addressing key economic and societal challenges; and 

• Draws on its work with Ministers and public services, to advance understanding of how 

evidence can inform and improve policy making and public services and contribute to theories 

of policy making and implementation. 

Through secondments, PhD placements and its Research Apprenticeship programme, the Centre also 

helps to build capacity among researchers to engage in policy relevant research which has impact. 

For further information please visit our website at www.wcpp.org.uk 

Core Funders 

Cardiff University was founded in 1883.  Located in a thriving capital city, 

Cardiff is an ambitious and innovative university, which is intent on building 

strong international relationships while demonstrating its commitment to Wales. 

 
Economic and Social Research Council (ESRC) is part of UK Research and 

Innovation, a new organisation that brings together the UK’s seven research 

councils, Innovate UK and Research England to maximise the contribution of 

each council and create the best environment for research and innovation to 

flourish. 

Welsh Government is the devolved government of Wales, responsible for key 

areas of public life, including health, education, local government, and the 

environment. 

http://www.wcpp.org.uk/
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Report Title 4 

Summary 

• The combination of increasing global 

demand for energy and strict carbon 

emissions targets have made the 

decision-making process around 

acquiring and using energy complex. 

In the context of the net zero by 2050 

commitment, the UK and devolved 

governments are interested in 

understanding the emissions 

implications of policy decisions.  

• This report for the Welsh Government 

looks at modelling emissions 

associated with the housing sector, in 

the context of Net Zero Wales, the 

Welsh Government’s second carbon 

budget (Welsh Government, 2021). 

• The Welsh Government’s 

decarbonisation strategy calls for a 

reduction in carbon emissions arising 

from Welsh homes by 80% from 1990 

levels by 2050.   

• Housing stock energy models 

(HSEMs) have potential to underpin 

housing decarbonisation policy. The 

models calculate the energy 

performance and associated carbon 

emissions of national and sub-

national housing stocks. HSEMs can 

broadly be divided into two types: 

traditional and dynamic. 

• Traditional housing stock energy 

models (T-HSEMs) focus on 

modelling annual energy use and 

associated carbon emissions. T-

HSEMs have contributed to 

formulation of energy-related housing 

policy. However, a weakness of these 

models is that the structure of the 

housing stock remains unchanged in 

the scenarios, whereas in practice the 

housing stock changes all the time. 

• Dynamic housing stock energy 

models (D-HSEMs) aim to capture 

the ongoing changes that occur in the 

housing stock.  D-HSEMs have to 

date been under-used but they have 

the potential to enable policymakers 

to estimate the likely economic and 

carbon impacts of strategies to 

decarbonise the housing stock over 

the longer term. 

• Unifying traditional and dynamic 

approaches to housing stock energy 

modelling has the potential to create 

a more comprehensive resource to 

support the analysis of policies that 

are formulated with long-term 

decarbonisation targets in mind. 

• The report concludes with short and 

medium-long term recommendations. 

The recommended short-term 

strategy is to adapt a T-HSEM that 

employs dynamic simulation 

techniques to create a Welsh 

Housing Model (WHM). 

Recommended medium-long term 

strategies involve further 

development of analytical capabilities 

of the WHM. 
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ENHub Housing stock energy hub 

EPC  Energy Performance Certificate 

ERR   Energy-Related Renovations 

GUI   Graphical User Interface 

HSEM  Housing Stock Energy Model 

SAP  Standard Assessment Procedure 

SDM  System Dynamic Modelling  

T-HSEM Traditional Housing Energy Model 

WHCS Welsh Housing Condition Survey 

  



 

6 

 

Introduction 
The combination of increasing global demand for energy and strict carbon emissions 

targets have made the decision-making process around acquiring and using energy 

complex. In the context of the commitment to achieve net zero CO2 emissions by 

2050, the UK and devolved governments are interested in understanding the 

emissions implications of policy decisions and the interrelationships between them.  

The Wales Centre for Public Policy was asked to support the Welsh Government to 

develop an approach to capture the carbon impact of policy decisions, including an 

assessment of how examples of good practice can be built upon. The Welsh 

Government are particularly keen to understand how measures to model or account 

for emissions across Government can increase awareness of the carbon impact of 

policy decisions.  

In commissioning this report, the Welsh Government indicated a particular interest in 

four main questions:  

1 What are the emerging trends in the housing sector with respect to 

decarbonisation? How might these affect the modelling of the housing sector? 

2 What housing models exist and how can they inform policy options and 

awareness of the need to reduce emissions? How consistent are different 

models or approaches with each other, and what is the extent of any overlap? 

3 What tools are available to capture the projected carbon emissions (from 

smaller-scale policy decisions)? How have these been used in other 

governments, nations and in private industry? 

4 How can the results of sectoral or policy-based models be used to inform the 

broader Net Zero target? What options are available to formulate a coherent and 

integrated approach across government? 

To address these questions, this report provides a synthesis of research on 

modelling strategies and related software that calculates the energy performance and 

associated carbon emissions of national and sub-national housing stocks. This 

review of Housing Stock Energy Models (HSEMs) is intended to support the 

formulation of housing stock decarbonisation policy and the evaluation of its 

effectiveness.  

This review starts by summarising the housing situation in Wales, its energy 

performance and the related policy context. It then critically analyses different types 

of HSEMs; starting with an examination of traditional HSEMs, which have been 
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employed for the last 50 years in the UK to test scenarios to reduce energy use and 

carbon emissions from housing, for a snapshot in time. The report goes on to discuss 

HSEMs that have recently emerged in Europe, which model how the composition of 

housing changes with time (due to construction, renovation and demolition) and the 

consequential impacts on carbon emissions. After discussing the advantages and 

limitations of both traditional and dynamic approaches, the review concludes by 

proposing a suite of research, development and application priorities to support 

Wales in developing a model which would ultimately unite the best of both 

approaches to support the evidence-based decarbonisation of its housing stock.  

Housing stock energy use in 

Wales 
The Welsh Government’s decarbonisation strategy, Net Zero Wales, calls for a 

reduction in carbon emissions arising from Welsh homes by 80% with respect to 

1990 levels, by 2050 (Welsh Government, 2021). At present, some 80% of energy 

use in housing in Wales is due to space heating and domestic hot water use, based 

predominantly on gas fired central heating systems. The Decarbonisation of Homes 

Advisory Group has recommended that the Welsh Government set a target to retrofit 

the housing stock to achieve an Energy Performance Certificate (EPC) band A rating; 

representing a median energy efficiency score of 92 or better. Reducing the demand 

for heating offers the greatest potential here, but this may not be realised in all cases, 

for reasons of cost effectiveness or of architectural heritage conservation.  

Of the 1.44 million dwellings in Wales, some 70% is owner-occupied, with the 

remainder being split between private rental (14%), social (10%) and local authority 

(6%) housing providers (Stats Wales, 2020). As most of the housing stock is owner 

occupied this is the tenure which has been most widely studied for energy-related 

renovations (ERR) such as insulating the walls, roof or floor, substituting the glazing 

or installing a more efficient heating system. 

EPC ratings for the Welsh housing stock have improved considerably, with ratings of 

B and C properties having risen from 5% in 2008 to 27% in 2018. However, despite 

improvements across all other categories, 73% of dwellings are rated D or lower. The 

most recent analyses of EPC ratings by the Office for National Statistics are 

somewhat more encouraging (Office for National Statistics, 2021). They estimate the 

median energy efficiency rating for all properties in Wales to be 64, corresponding 

roughly to the upper quartile of band D. This dataset also suggests that the 
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proportion of properties rated C or above has increased to 37%.1 However, pre-1900 

and 1919-1929 dwellings are estimated to fall significantly short of targets, with 

median ratings of 51 and 55 respectively. During these periods, solid walls were the 

dominant mode of construction. Of the 28% of properties in Wales that are 

constructed of solid walls, some 82% are uninsulated; in contrast to just 32% of 

uninsulated cavity walls (Welsh Government, 2019).  

 

Box 1: Housing condition surveys 
The English Housing Survey (EHS) is a continuous survey that is published 

annually and typically involves around 13,300 household interviews and 

around 6,200 physical surveys. Survey results from adjacent years are 

normally amalgamated when a survey dataset is released to the research 

community, so that these then represent a discrete two-year period, including 

around 12,400 physical surveys. In 2017/18 a Welsh Housing Condition Survey 

(WHCS) was conducted, involving physical inspections of 2,549 properties 

across Wales. These properties were selected to coincide with those that 

participated in the National Survey for Wales, which involved a household 

interview, so that the combined result was comparable to the EHS; albeit with 

smaller samples, reflecting the smaller population size. As part of the WHCS, 

the surveyors also calculated EPC ratings (Welsh Government, 2019).  These 

are compared to similar evaluations from the 2008 Living in Wales Property 

Survey, as well as to EPC datasets for the other UK nations.  

The UK government’s 2018 Clean Growth Strategy (CGS) set a target for all fuel 

poor homes to be EPC-rated C or higher by 2030, and has set an aspiration for as 

many homes as possible to be rated C or higher by 2035, where practical, cost-

effective and affordable (HM Government, 2018). This includes social housing, but 

the Climate Change Committee, in its Sixth Carbon Budget report calls for this to be 

bought forward to 2028 (Climate Change Committee, 2020). Furthermore, the CGS 

mandates that privately rented properties should have an EPC rating of E or above to 

be able to be let. According to Welsh Housing Condition Survey (WHCS) data, 7% of 

private rental properties received an F rating.  

In terms of property type (detached, semi-, terraced or flat) and tenure (social, private 

or owner occupied), it is clear that social housing performs comparatively well, as do 

 

1 However, the level of skill and rigour employed in the execution of the WHCS surveys and EPC ratings is likely 
to exceed that of the ONS’s EPC dataset, so that comparisons should be approached with a degree of caution.   
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flats and maisonettes (Table 1). This is expected, due to the reduction in surfaces 

(floor, roof or wall) that are exposed to the outdoors.  

Table 1: Median EPC energy efficiency scores by property type and tenure for 

Wales 

Tenure (rows) and type 

(columns) 

Detached 

(33%)* 

Semi-detached 

(29%) 

Terraced 

(31%) 

Flats and maisonettes 

(65%) 

Social rental (56%) 67 67 68 73 

Private rental (30%) 56 61 61 68 

Owner occupied (23%) 59 60 59 70 

Source: Office for National Statistics, 2021. 

* The figures in brackets are the corresponding percentages of dwellings having an EPC rating of C or 

higher 

 

To understand how the retrofit target of an EPC band A rating for the Welsh housing 

stock could be achieved it is necessary to use a housing stock energy model which: 

• Represents the housing stock in a disaggregated manner, discriminating by 

age and thus mode of construction as well as by type or archetypal form; 

• Represents the mode of tenure of the housing stock and, preferably, accounts 

for the policy measures that target these different tenures; 

• Predicts the likely outcomes from policy and regulatory measures that target 

different property types and tenures; and 

• Accounts for the fact that by 2050 the composition of the Welsh housing stock 

is likely to be different, as houses are demolished, renovated and (re-) 

constructed. 
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Housing stock energy modelling 
The UK has a long history of developing and applying HSEMs, starting from the early 

post-1973 oil crisis period, with more than 30 HSEMs having been developed in the 

UK to date. This section describes two categories of model, traditional and dynamic, 

and how they have been applied. It also considers the extent to which external 

factors influencing housing energy use are represented, such as climate, the broader 

energy system and local infrastructure networks. 

Housing stock energy models may have different time horizons, ranging from short- 

to long-term. Short time horizon applications might focus on testing the effectiveness 

of specific interventions in relation to specific types of houses, to illustrate how they 

might best be renovated to reduce their carbon emissions, say over the next three to 

five years. These models make no judgements about the likelihood that these actions 

might be taken, rather they allow the consequences of scenarios with assumed levels 

of uptake to be estimated. Studies to support UK housing policy have been 

dominated by this type of modelling which concentrates mainly on applications of 

building physics to model energy flows in houses. We refer to these as traditional 

HSEMs or T-HSEMs. In the UK, T-HSEMs have overwhelmingly been based on 

simplified (monthly or annual) energy balance calculations that are unable to 

calculate indoor temperatures and how these, and related energy flows, are affected  

by occupants’ behaviours and the storage of heat in the building fabric.   

In the context of future climate impacts and the need to decarbonise heating to 

mitigate these impacts, current policy encourages heat pump uptake and the 

decarbonisation of the power sector. However, this could negatively impact on 

households’ livelihoods through increased operating costs, particularly if electrical 

energy costs rise (as they have during the recent energy supply crisis) to recover the 

costs from capital investments in low carbon energy generation technologies. 

Furthermore, thermal comfort and health may be compromised if the envelope isn’t 

insulated to compensate for lower water distribution temperatures from heat pumps. 

These impacts can only be studied using modern HSEMs that explicitly simulate the 

transient flows of heat in buildings and their energy and carbon consequences.  

Long time horizon models are more far reaching. They are concerned with the 

composition of the stock of houses and households and the external factors that 

influence them, in terms of construction, demolition and renovation. They seek to 

understand how national housing stocks are likely to evolve in response to scenarios 

to stimulate accelerated and deep renovation that complies with the 2019 

amendment of the 2008 Climate Change Act to achieve net zero by 2050 (The 
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Climate Change Act 2008 (2050 Target Amendment) Order 2019). These policy 

impacts can only be revealed through dynamic simulations of the housing stock 

composition. We refer to these as dynamic HSEMs or D-HSEMs.  

Note that these dynamic HSEMs may be thought of as an extension of traditional 

HSEMs, as these also calculate housing energy use and associated carbon 

emissions; the key distinction being that they also model how the composition of a 

housing stock changes over time.  

This section begins with a review of simplified T-HSEMs and goes on to review 

recent, more sophisticated models, that transiently simulate energy use and internal 

conditions in houses. We then discuss D-HSEMs that have recently emerged in 

Europe to study the dynamic composition of the housing stock. We conclude by 

discussing how the virtues of these two modelling approaches could be combined to 

significantly strengthen their ability to support the analysis of Housing stock 

decarbonisation policy.  

Traditional housing stock energy models 
Traditional housing stock energy models (T-HSEMs) consist of two key interrelated 

component parts: the energy use modelling calculations and the processing of data 

representing the housing units to be modelled. Since it is impractical to model every 

individual house in a (sub-) national stock, this method clusters housing units into 

archetypes. In this section, we discuss approaches to energy modelling (including 

behavioural modelling and energy conversion modelling) and housing archetyping. 

Energy use modelling in T-HSEMs 

T-HSEMs can be classified as top-down or bottom-up, Figure 1. Top-down models 

have mostly been used to anticipate future energy supply requirements. Most T-

HSEMs are bottom up, employing simplified energy balance calculations, although 

there exist recent models that calculate the transient flows of heat (e.g. hour by hour) 

in houses and the consequential indoor conditions.  
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Figure 1: Types of T-HSEM and their representations of the housing stock 

The top-down approach to housing stock energy modelling relies on aggregate 

information describing historical energy use for the housing sector as a whole and 

how this may be influenced by macroeconomic and technological effects. This does 

not permit the disaggregation of energy use by types of dwelling or by dwelling use. 

As such these types of model do not support the testing of specific interventions and 

their effects in relation to specific types of property, but they do support broad sector 

level energy use forecasts. As such, they are mainly used to anticipate future energy 

supply needs. 

In contrast, the bottom-up approach determines the energy use of each type of 

building (or archetype), potentially also of their end uses, aggregating this data 
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through weights to determine the total energy use of the corresponding proportion of 

the housing stock that is comprised of this archetype. These models may use 

statistical or engineering techniques. Statistical bottom-up models employ detailed 

disaggregated data to find relationships between energy use and the buildings’ 

features, including the characteristics of the building envelope, electrical appliances 

and energy (e.g. heating) systems. Engineering bottom-up models conventionally 

use simplified monthly or yearly energy balance models to evaluate the energy 

demands of housing archetypes. However, more recent T-HSEMs (e.g. EnHub and 

ResStock, discussed below) employ sophisticated energy simulation techniques that 

explicitly simulate hourly energy flows and indoor conditions.  

These bottom-up transient engineering models are the most powerful as they 

calculate hourly energy use and how this is split by end uses. As such, they support 

the explicit modelling of a range of potential interventions and, data permitting, at any 

desired level of disaggregation of the housing stock, accounting also for the temporal 

character of energy use and indoor conditions. Coupled with recent advances in 

behavioural modelling, these can also explicitly account for the impacts of occupants’ 

behaviours on housing energy use. The energy modelling and simulation techniques 

used in bottom-up engineering models are explained in detail in Annex 2.   

Many of the most commonly used models in the UK are derivatives of the Building 

Research Establishment Domestic Energy Model (BREDEM), a simplified bottom-up 

engineering model. The Cambridge Housing Model (CHM) is one such model, and 

has recently been employed to inform the Housing Energy Fact File and Energy 

Consumption in the UK. BREDEM-derived models employ simplified energy balance 

modelling whereby the effects of internal thermal mass on the moderation of the 

demand for space heating are accounted for, but in a very approximate way. 

However, the consequences for indoor temperatures and thus for occupants’ thermal 

comfort and the risks of overheating cannot be handled by these models. Similarly, 

the way in which the impact of fuel poverty plays out, in terms of balancing the cost of 

energy use with indoor (dis)comfort and health cannot be explicitly represented by 

these models. Nor can the rebound effects in terms of costs and associated energy 

use impacts that arise from the proposed shift towards electrified heating, in 

particular through the use of air- or ground- source heat pumps. Heat pumps operate 

more efficiently at lower temperature uplifts (the difference in temperature between 

the source (air-, ground-) and the distribution medium (water in pipes) and so they 

are normally sized for moderate uplifts. As such, this electrification of heating may 

result in lower indoor temperatures unless it is accompanied by sufficient insulation 

upgrades and/or changes to the sizes of indoor heat emitters (e.g. radiators). 

Furthermore, time varying energy tariffs may be introduced to encourage 

homeowners to use power during lower tariff periods to reduce peak demands on the 
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power system: this would change the time profile of energy usage. Energy simulation 

models can explicitly simulate the interactions between these broader influences on 

both transient energy use and indoor conditions. 

Behavioural modelling in T-HSEMs 

To maintain their comfort, occupants of buildings may adjust their personal 

characteristics (clothing, posture, activity, consumption of drinks etc.), their 

environment (curtains and blinds, window openings, desk fans) and the 

environmental control systems that are available to them (heating, cooling, ventilation 

and lighting). All of these have implications for energy use. In addition, they may use 

a range of other energy services, for example to support cooking, working, 

entertaining, cleaning etc. Maier et al. (2009) identified a factor of two variation in 

heating demand in their study of 22 identical residential houses in Germany. 

Meanwhile, Gill et al. (2010) found through post-occupancy evaluations of UK eco-

homes that occupants’ behaviours account for a variation of 51% in heating demand 

between similar dwellings.  

Since these adaptations take place in response to transient local stimuli (Haldi and 

Robinson 2009, 2010), they are not handled by BREDEM-type models. BREDEM-

type models do though handle, albeit in an approximate aggregate and constant way, 

occupants’ activity-based (metabolic) heat gains as well as heat gains arising from 

the use of lights and energy services. BREDEM-type models also capture 

intermittency in the use of heating systems as well as the heat gains (end electrical 

energy use) arising from the use of domestic hot water. However, BREDEM type 

models do not capture behavioural changes such as the use of curtains or blinds, or 

adjusting windows to allow for ventilation.2  

In contrast, models such as EnergyPlus that simulate transient indoor environmental 

conditions can be integrated with stochastic models of occupants’ behaviour. These 

models can then predict the likelihood that people will adopt behaviours to alleviate 

discomfort, and the energy and indoor environment consequences of these actions, 

as well as the likely activities and related energy services that may be called upon. 

Indeed, dedicated behavioural modelling platforms such as No-MASS (Chapman et 

al., 2018) and ObFMU (Hong et al., 2016) can be readily coupled with EnergyPlus or 

any other dynamic building energy simulation program to support comprehensive 

behavioural modelling, including at housing stock level. 

 

 

2 These adaptations take place in response to transient local stimuli, see Haldi and Robinson 2009, 2010. 
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Energy conversion modelling in T-HSEMs 

All T-HSEMs translate the demand for energy to heat (and cool) buildings into a 

corresponding energy use, by accounting for the efficiency of the systems that 

convert chemical (in the case of gas boilers for example) and electrical (in the case of 

direct electric heating or heat pumps) energy into heat. Simplified energy balance 

models do this using assumed constant efficiencies, whereas transient energy 

simulation techniques explicitly calculate the efficiency with which these energy 

conversions take place, depending upon the prevailing environmental conditions. As 

such, they are more accurate in their calculations of energy use and indoor 

conditions.   

The final element in the jigsaw of a building’s operational energy flows, once the 

energy demand has been converted to an energy use, is to consider any on-site 

generation of renewable energy. For example, by converting wind kinetic energy or 

solar energy into renewable electricity. BREDEM-based energy balance models also 

calculate these energy conversion processes by employing fixed efficiencies. In the 

case of solar photovoltaic panels, this calculation considers a correction to the peak 

output of the panel (accounting for sub-peak inefficiencies) and an overshading 

correction factor. In the case of wind turbines, the calculation corrects for wind speed 

at the wind turbine hub height, as a function of the terrain and the size of the turbine. 

Energy simulation techniques in contrast, calculate the transient and technology-

specific conversion efficiency, explicitly (in the case of solar energy) accounting for 

the dynamic impacts of the local context on the energy available to be converted. 

This means the models more accurately determine the renewable energy that is 

available to be used by the lights, appliances and (if electrified) heating and hot water 

systems.  

Housing archetypes 

It is impractical to model every individual house in a (sub-) national stock, therefore 

this modelling method clusters housing units into archetypes. Different HSEMs 

employ different strategies for sampling the housing stock, with different levels of 

granularity used, from a single average dwelling (BREHomes), through a small 

number of categories of shape and age (DeCarb) to one model for each English 

Housing Survey (Cambridge Housing Model, CHM). This generally reflects the 

availability of data within the target (sub-) nation. The EU-funded Tabula project 

(Ballarini et al., 2014) identified three such sampling strategies:  

• Real example buildings, in which a single real building is subjectively 

selected by a panel of experts as being representative of a particular 
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cohort (of archetypal shape and vintage), or of the stock at large, when 

statistical data is unavailable;  

• Real average buildings, in which survey data are analysed to identify a real 

example building that is a statistically sound representation of the mean 

characteristics of the cohort; and 

• Synthetic average buildings, in which a synthetic composite building is 

constructed, with each geometrical, constructional and systems attribute 

being representative of the average from amongst the available data.  

Fonseca et al. (2017) employ an alternative, fourth, strategy: using repeated random 

(‘Monte Carlo’) sampling of probability distributions describing the attributes of 

buildings that are surveyed in preparing individual entries to large EPC datasets. This 

synthetic stock modelling approach enables not only the average energy use, but 

also its distribution to be calculated.  

In the UK, the CHM primarily utilises EHS data to model archetypes (one per survey), 

with the results upscaled, through EHS weightings to support estimations of national 

energy use and associated CO2 emissions due to the total size of the housing stock 

that is represented by each survey entry. With more than 12,000 models this makes 

scenario modelling complex and time consuming; it also means that there is both 

avoidable duplication and gaps in parameter values that are not addressed.  

Two recent T-HSEMs (EnHub in England and ResStock in the United States) share 

EnergyPlus as their underlying transient energy simulation engine, Box 1. While most 

T-HSEMs approximate heat flows in monthly or annual steps, EnHub and ResStock 

transiently simulate the flow of heat through a dwelling from first principles. This 

makes it possible to calculate how energy is used on an hourly basis and to predict 

the resulting indoor temperatures. (See Annex 2). 

 

Box 1: Examples of alternative T-HSEMs using transient 

energy simulation 
The simulation-based T-HSEM EnHub platform uses transient energy 

simulation (Sousa et al., 2018, 2020). It also employs synthetic stock modelling 

to more reliably represent the housing stock; defining archetypes that address 

shape, vintage, climatic region, heating system type and tenure. In this way, a 

synthetic stock of 1064 archetypes is generated, which is less than one tenth 

the size of the original EHS dataset, and in which each element retains links to 

its parent archetype.  
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Through this parsimonious archetyping strategy, the housing stock is 

represented with a minimum of archetypes, to more efficiently test 

interventions and their effects. This allows for faster modelling without 

sacrificing accuracy in the representation of housing stock. An important 

feature of EnHub is that it has been designed and developed to respect 

essential software engineering principles (modularity, transparency, openness, 

updatability etc).3 

Further afield, and in a similar vein, ResStock (Wilson and Merket, 2016, 2018), 

developed and maintained by the US National Renewable Energy Laboratory, 

employs the same underpinning energy simulation engine as EnHub, 

EnergyPlus. This models some 350,000 archetypes, based on a combination of 

public and private datasets, to simulate the c.80million dwellings in the US. 

Policy applications of T-HSEMs  

T-HSEMs have helped policymakers to understand the extent of emissions arising 

from the housing stock and the potential for reducing them, despite the weaknesses 

discussed above. Early HSEMs were developed following the 1973 oil crisis, to shed 

light on how energy demands in housing could be reduced, paving the way for the 

introduction of conservation of fuel and power regulations, housing insulation 

schemes, home energy rating schemes and carbon accounting in environmental 

assessment methods. Since then, housing models have been frequently used to 

inform environmental and energy policy.  

As noted earlier, BREDEM-based models have dominated this policy-related 

landscape. In particular in the form of applications of BREHomes (Shorrock et al., 

1997) to model future housing energy use and carbon emissions based on 

projections of the uptake of energy conservation and efficiency measures by fitting a 

model to historic data, and also of assumed enhancements to the rate of uptake. 

Johnston et al. (2005) later employed a similar approach to examine housing carbon 

emission scenarios based on assumed penetration of energy conservation and 

efficiency measures. 

More recent applications have employed the CHM to support the UK Housing Energy 

Fact File and Energy Consumption in the UK reports, which have themselves 

informed housing decarbonisation policy (e.g. the Green Deal) (Palmer and Cooper, 

2013; Department for Business, Energy and Industrial Strategy 2021). Due to the 

nature of the underlying BREDEM model, these applications have been based on 

 

3 See Annex 3 for more on best practice in this area. 
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what-if scenarios of assumed substitutions of features of the envelope or systems of 

the modelled archetypes, and thus do not respond to how the structure and use of 

the housing stock changes over time. Also, the underpinning algorithms are not 

transparent and so do not facilitate assessments of how the tool should be improved 

(Sousa et al., 2018). 

Figure 2 identifies T-HSEMs that have been developed in the UK, when they were 

developed and the coinciding housing-related energy policies and regulations that 

motivated their development and/or benefitted from their application. 
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Figure 2: T-HSEMs in the UK, when they were introduced and the coinciding energy policies.  

Source: Sousa et al., 2017
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The Standard Assessment Procedure (SAP) and its reduced version Rd-SAP are 

also both based on BREDEM. These calculations are employed in the building 

regulations, to perform EPC calculations as well as to identify candidate investments 

and the extent to which a house’s EPC band could be cost effectively raised. This 

also underpinned the UK government’s Green Deal.  

In the United States the National Renewable Energy Laboratory has developed 

ResStock, as mentioned above, which simulates the (sub-) hourly demand for 

energy. Visualisations of results are made freely available to city, state and federal 

policymakers as well as to manufacturers and utilities, better leveraging the 

investment in developing and deploying this T-HSEM than has been the case in the 

UK. 

The state of the art in Wales appears to be the model by Green et al. (2020). This is 

a simplified T-HSEM of the Welsh housing stock, drawing on EPC and WHCS data to 

define fourteen archetype-vintage pairings and their weights (the proportion of the 

Welsh housing stock represented by them). EPC data was then analysed to attribute 

to the fourteen archetypes, creating average dwellings with which to perform SAP 

calculations. Four different retrofit scenarios were considered, representing a 

combination of constraints and opportunities: heritage, rural, good practice and best 

practice, together with three power system decarbonisation scenarios (minor, 

significant and transformational change). The per-typology (or archetype-vintage 

pairing) and stock-level costs and carbon impacts of these scenarios were estimated, 

assuming perfect uptake.  

This is a useful model, but it does not support analysis of likely impacts of alternative 

decarbonisation policy measures due to several drawbacks (which are common for 

other models too), e.g.,:  

• It does not reflect the heterogeneity of the stock and therefore SAP and 

carbon outputs are not representative. This is due to the model’s limited 

number of archetype-vintage pairings and the simplified energy modelling 

calculations employed; 

• The housing stock is assumed to be static and the likely adoption of low 

carbon renovation strategies and corresponding (p)rebound effects is not 

addressed; 

• The simplified energy balance model does not permit predictions of the indoor 

environment and comfort, which is particularly important for scenarios 

representing heat pumps; 

• Although the power system is considered, the future climate and its impacts 

are not; and 
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• Embodied energy and carbon emissions arising from renovations are not 

considered 

Critique of traditional HSEMs 

T-HSEMs have a long history of supporting assessments of energy use in housing in 

England and of indirectly supporting the formulation of energy-related housing policy, 

discussed above. However, a weakness of these models is that the structure of the 

housing stock remains unchanged in the scenarios whereas in practice changes are 

occurring to the housing stock all the time, and as such these models are limited in 

the extent to which they can be used to accurately forecast the way in which housing 

stock and the carbon emissions arising from it is likely to evolve in the future.  

T-HSEMs have overwhelmingly employed simplified energy balance methods to 

estimate the annual energy use and carbon emissions of the stock and of scenarios 

involving assumed uptake of envelope components (e.g. insulation) and system 

substitutions (e.g. heating system type). As such, in contrast to energy simulation 

techniques, they are unable to evaluate: 

• Simultaneous interactions between the envelope and the heating system, 

and how this affects indoor conditions, such as when heat pumps replace 

boilers; 

• The extent to which future warmer climates will impact indoor conditions, with 

consequential risks for overheating and related premature deaths; 

• Symmetrically, the extent to which fuel poverty leads to the underheating of 

homes and how this impacts on indoor comfort and health; and 

• The impacts of occupants’ behaviours on energy use and indoor conditions 

and how these might change following renovation decisions (the so-called 

rebound effect). 

This means that energy balance-based T-HSEMs are limited in their modelling 

potential and will face particular difficulties in meeting the challenges arising from a 

changing climate, changing energy and heat sources, and behavioural changes on 

the part of occupants. In contrast, energy simulation based T-HSEMs such as EnHub 

do not suffer from these drawbacks, so long as behavioural feedback is accounted 

for.   

All T-HSEMs fail to consider the energy and carbon that is embedded in their 

construction materials and the lights, appliances and systems that are 

accommodated, as well as their broader lifecycle impacts. This precludes analysis of 

the broader environmental impacts of renovations and of whether renovation is 

preferable to demolition and reconstruction. They also fail to discriminate between 
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the circumstances of households that are occupying housing archetypes, preventing 

them from being used to identify specific combinations, for example low income 

households who are in particular need of assistance as they occupy high energy- and 

carbon- intensity housing. Similarly, they also do not model the ways in which houses 

and the households occupying them are spatially clustered, and thus to spatially 

target where there are particular needs for local authorities to support renovations.  

Furthermore, the focus on assumed rather than predicted substitutions, and how 

these might be influenced by policy interventions, means that T-HSEMs are limited in 

the extent to which they can support housing decarbonisation policy. They can 

highlight where decarbonisation potential in specific housing archetypes lies, but they 

are not able to offer forecasts as to the extent to which this potential will be realised 

and the time horizon needed for the changes to be achieved. This would require 

household investment decisions to be modelled in the shorter term. Considering 

longer term policy decisions and influences, it is necessary to consider how the 

housing stock is likely to evolve in response to population change and building 

degradation, how households relocate as their circumstances change and how these 

circumstances influence renovation decisions. In short, explicit consideration of stock 

dynamics becomes necessary beyond the short term. 

 

Dynamic housing stock energy models  
In contrast to T-HSEMs that focus on identifying what is possible within the 

constraints of the current housing stock, D-HSEMs aim to capture the ongoing 

changes that occur in the housing stock. These have the potential to be a powerful 

resource for policymakers, enabling them to estimate the likely economic and carbon 

impacts of their policies and strategies to decarbonise the housing stock over the 

longer term. 

The composition of a housing stock is in a constant state of flux, as houses are 

demolished, new houses are constructed and existing houses are renovated, in 

response to changes in household circumstances, lifestyles, aspirations and 

demographic change. D-HSEMs which consider a longer time horizon model how the 

size and composition of the housing stock changes from year to year, as new houses 

are built, larger houses are sub-divided into flats, older substandard houses are 

demolished and replaced or houses are simply renovated. In this way, D-HSEMs 

have the potential to more effectively inform and shape policy decisions.   

Demolition, construction and renovation activity also has environmental implications, 

due to the inflows and outflows of materials, appliances and systems. Longer term 
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operational energy use is also influenced by climate change, structural changes to 

the energy system and connectivity to more localised energy infrastructure such as 

district heating networks.  

D-HSEMs can consider how these factors evolve over time and the extent to which 

they influence housing energy use and associated emissions. They could, therefore, 

offer a more sophisticated and sensitive approach to modelling the emissions 

consequences of policy decisions. This section outlines the underlying principles of 

D-HSEMs and their advantages for policy. 

Housing stock dynamics 

D-HSEMs (Figure 3) have been developed over time since the model type was first 

introduced by Muller (2006).4 In this model, new construction is determined by 

population growth linked to a corresponding dwelling occupancy density, while 

demolition is determined by an assumed distribution describing the probable lifetime 

of buildings constructed by each stage.5 This simple model treats the stock as a 

single aggregate or cohort. Sartori (2016) develops Muller’s modelling approach, 

dividing the Norwegian stock into vintages and modelling their demolition and 

renovation using building- and component- level lifetime distributions, fitted to 

statistical data. This model then assumes that renovation or demolition of the existing 

stock happens only as a result of deterioration of the building fabric. 

 

4 Muller used a form of dynamic material flow analysis in which the size of the stock at a year t+1 is equal to the 
size of the stock at year t, plus inflows from new (or replacement) construction at t less the outflows due to 
demolition at t. 

5 The Muller model was developed to anticipate the evolving demand for concrete in the Netherlands. 
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Figure 3: Types of D-HSEM, their representations of the housing stock and its 

environmental impacts 

 

Sandberg et al. (2016), who apply this model to 11 EU countries to model stock 

dynamics, suggest that renovations could be linked to modelled transitions in 

vintage-specific energy use intensity. McKenna et al. (2013) employ this technique to 

model the dynamics of five archetypes and six vintages representing the German 

housing stock, together with its corresponding energy use; likewise Vasqez et al. 

(2016) to model the housing stocks of Germany and the Czech Republic, to test the 

Key: Dashed boxes are 

optional processes which may 

not be handled in some cases. 
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effectiveness of reductions in energy use intensities applied to existing buildings 

through assumed renovation rates and to future new construction.  

This approach is expanded upon by Heeren et al. (2013), who model the dynamics 

and energy performance of similar vintages representing the building stock of the city 

of Zurich in Switzerland. For this latter, operational energy use is modelled by a 

monthly energy balance calculation, complemented with life cycle analysis (LCA) of 

the materials’ environmental impacts. This simply requires that the elements of the 

building envelope are associated with the corresponding entries in a database (such 

as the popular Ecoinvent database) that represent their environmental impacts. 

Heeren et al. (2013) complement this with scenarios addressing future power system 

carbon intensity. Nägeli et al. (2018) employ an approach similar to that of Heeren et 

al. (2013), to model energy use of a synthetic stock representing the Swiss housing 

stock, also accounting for renovation through a component deterioration approach. 

This approach provides a more detailed understanding of building deterioration by 

modelling how individual parts of the building fabric deteriorate, rather than assuming 

a constant building-wide rate. It can be further complemented with strategies to test 

effectiveness of reduction in energy use intensities and scenarios addressing power 

system carbon intensity.  

This approach has been applied in the UK by Serrenho et al. (2019), who employ a 

dynamic material flow analysis of archetypes and vintages representing the UK 

housing stock, in conjunction with simplified empirical modelling of operational and 

embodied carbon emissions based on the SAP calculations from EHS survey data. 

They deploy this model to examine the feasibility of achieving national 

decarbonisation targets based on assumed reductions in energy use intensity and 

the use of low impact materials in conjunction with assumed renovation rates, as well 

as trade-offs between renovation and demolition and reconstruction.  

These approaches are useful in that they enable the impacts of demolition, (re) 

construction and renovation to be modelled.6 However, the models are based on the 

assumption that demolition and renovation activities are determined exclusively by 

deterioration (the left side of Figure 3). In practice, the causes of demolition and 

renovation are considerably more complex. The following sections set out some of 

these additional factors, and how they have been used to further develop D-HSEMs, 

before exploring some limitations of this modelling approach.  

 

 

6 Indeed, Lavagna et al. (2018) highlight the importance of upgrading existing buildings rather than demolishing 
and rebuilding them, as the construction phase accounts for up to 40% of total life cycle impacts. 

https://www.ecoinvent.org/
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Socioeconomic drivers of housing renovation 

Homeowners’ decisions to invest in energy-related renovations are influenced by 

their views of the financial viability of these investments. These are determined by 

the upfront costs (influenced by the scale and complexity of the house and the scope 

of the investment), the costs of financing, future potential cost savings and the 

associated payback period as well as the amount of savings available (Wilson et al., 

2018). However, Energy Related Renovation (ERR) decisions are not influenced by 

finances alone. Other factors include perceived (dis)comfort and environmental 

concerns (Curtis et al., 2018) as well as social norms or the recommendations by 

others (Kastner and Stern, 2015) and how these may be influenced by social 

networks (Friege, 2016). Decisions may also be constrained by barriers including 

perceived disruption, homeowners’ knowledge or the availability of information with 

which to judge the suitability of investments and the associated trust in any advice 

given (Wilson et al., 2018). 

Broers et al. (2019) and in a similar vein Wilson et al. (2018) outline a multi-stage 

process by which these decisions are made:  

• Getting started: interest is triggered by one’s own beliefs (e.g. about comfort or 

environmental concerns) or by information campaigns (e.g. on the benefits of 

renovation, the availability of financing or of local subsidies); 

• Gaining information: through knowledge or the input from an expert, say 

following an energy audit; 

• Forming an opinion: weighing up the factors mentioned above; and 

• Making a decision and following this through with implementation.  

Social simulation techniques could provide a vehicle by which the complexity of 

homeowners ERR decisions could be mapped onto renovation outcomes: 

‘An approach for future research is to use simulation which maps the 

decision-making process of home-owners on ERRs for their homes, 

exploring heterogeneity, perceived economical and non-economical 

motivations and barriers, and social impacts in different socio-spatial 

structures… it may result in refining existing instruments or developing new 

innovative instruments that would address the [low take up rates in ERR]. 

This could save a considerable amount of time and resource…to meet 

climate protection targets.’ (Friege et al., 2014: 205) 
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Rebound and pre-bound effects 

ERR decisions are complicated by the energy-related practices of households, both 

prior to and after the implementation of renovations.   

If a household invests in an ERR the expectation would be that the price for heating 

in the future would be lower, all things being equal, thus increasing the household’s 

disposable income so that the capital cost can be recovered. However, this increase 

in disposable income can have the effect of increasing consumption of the energy 

service in question, heating in this case to raising the indoor temperature and 

improve comfort conditions. The increased disposable income may also afford 

increased consumption of other goods and services that use (e.g. lights, appliances) 

or embody (e.g. furniture) energy. These are referred to respectively as the direct 

and indirect rebound effects (Chitnis and Sorrell, 2015) and both can increase energy 

use and emissions. Chitnis and Sorrell (2015) estimate these effects to cause a 41% 

increase in domestic gas use.  

In addition to this over-consumption of energy services following an ERR, there is 

also evidence of under-consumption prior to undertaking such an investment. For 

example, indoor temperatures being lower than expected, compromising thermal 

comfort and health and reducing energy use and emissions. Galvin and Sunnikka-

Blank (2016) suggest that this causes measured energy use in Germany to be 35% 

lower than expected; with this gap increasing as consumption increases, and vice-

versa, becoming negative in the case of low energy houses. These (p)rebound 

effects have been confirmed as significant through pre- and post- intervention 

measurement of energy use and indoor climate conditions in Welsh housing 

(Poortinga et al., 2018). Prebound and rebound could also be handled through social 

simulation. 

Incorporating socioeconomic effects in D-HSEMs 

There are two dominant types of models that capture social and economic effects 

(the right side of Figure 3): system dynamic models (SDMs) and agent based models 

(ABMs). SDMs represent the system being modelled as a set of aggregated 

interrelated component parts, simulating their dynamic evolution in terms of stocks, 

flows and feedbacks. They are particularly suited to top-down modelling, though sub-

stocks can be defined, for example to represent housing archetypes and vintages. 

ABMs represent the system under consideration through sets of agents that interact 

with one another as well as with the environment. These agents can have different 

purposes and be defined at differing levels of aggregation. In the current context, 

they could be defined to represent housing archetypes and vintages, as with SDM, or 

individual houses with further agents representing the household or its members. 
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They also have the flexibility to represent organisations involved in construction and 

renovation, as well as infrastructure provision, financing, policy formulation etc.  

Fazeli and Davidsdottir (2015, 2017) developed an SDM of the Icelandic housing 

stock, through three vintages and archetypes, to account jointly for physical 

deterioration and social effects as drivers for renovation, together with policies to 

influence energy using behaviour as well as investments in both renovation and 

demolition and reconstruction. With abundant geothermal resources and 

correspondingly low prices for heat, they found that there is inadequate incentive to 

change daily energy using behaviours or to stimulate renovation, but that aggressive 

policies to favour demolition and construction (represented simply by changing their 

rates) was effective in reducing future energy demand. Zhou et al. (2020) also 

employ SDM, this time to model the turnover of the total stock and of vintages of 

housing in China, with a view to, in the future, testing trade-offs between operational 

and embodied energy use. This however, only accounts for ageing as a determinant 

of demolition, construction and renovation.  

Natarajan et al. (2011) reformulated their existing traditional HSEM called DECarb 

(Natarajan and Levermore, 2007), essentially wrapping an ABM framework around 

the core energy modelling engine to create DECarb-ABM. This framework was 

designed to represent both household agents and contractor agents; these latter 

being responsible for demolition and consequent rehousing of the former. This was 

an audacious project, but unfortunately the framework appears not to have been 

completed or deployed to realise its potential.  More recently, Nägeli et al. (2020, 

2020a) have developed a preliminary Agent-Based Building Stock Model (ABBSM), 

which consists of an ABM wrapped around the energy-balance model that was at the 

core of their former dynamic HSEM, thus replacing the dynamic MFA model with an 

ABM. Swiss building census data is used to generate a synthetic stock of dwellings. 

A deterioration process drives a demolition, reconstruction and renovation process, 

but the specific outcome of the renovation activity (the materials and systems 

adopted) is determined by a statistical (discrete choice) model, influenced by 

regulations, subsidies, energy prices and taxes. 

ABM approaches have the flexibility to represent the stock of housing and 

households in a highly granular way, together with other relevant actors, including in 

construction, energy supply, policy and governance; but thus far this capability has 

not been exploited. There are clear advantages to exploiting this capability which 

would allow for a much greater level of detail in modelling and correspondingly 

improved support for policy analysis. 
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Household composition 

In addition to these factors, there are other social, geographic and demographic 

factors which will influence the energy use of households and which would ideally be 

captured under HSEMs. The size and financial circumstances of a household 

determine, to a large extent, the tenure and type of house that it will occupy and 

where this house will be located, with both influencing its price. These choices may 

also be influenced by homophilic considerations; where households may wish to be 

co-located with households of similar social or cultural characteristics. As such, 

spatial clustering can emerge, which itself can reveal spatial inequalities. In 

particular, where low income groups find themselves segregated to less desirable 

locations and/or housing conditions (Stiglitz, 2012).   

The data presented in Table 1, above, reveals differences in median EPC rating 

between modes of tenure; with social housing providers delivering better performing 

housing than their private counterparts. This relates to the so-called split incentive 

problem (Fuerst et al., 2016), where the energy costs are not borne by the owner but 

by the tenant, so that energy-related investments are not directly recovered by 

energy savings but may be partially recovered through higher rents or shorter 

vacancy periods. Additional incentives may be needed here, such as the UK 

government’s recent barring of rental of housing that doesn’t meet band E or better 

(The Energy Efficiency (Private Rented Property) (England and Wales) Regulations 

2015).    

Accounting for these factors requires that a three-dimensional matrix be populated; 

with housing archetypes and vintages represented on one axis, household 

archetypes on another and modes of tenure on the third. To the authors’ knowledge, 

no HSEM has adopted such a strategy.   

Spatial analysis 

Spatial modelling provides the possibility to match buildings with local infrastructure 

provision and to better target where ERR interventions are most needed. Housing 

survey data can be used to generate a highly granular synthetic housing stock, 

offering the prospect of spatially realistic representations of housing energy 

performance, to facilitate the targeting of interventions to improve this performance. 

However, this can only be achieved if individual housing units can be paired with the 

corresponding element of this synthetic stock. At the (sub-)national scale, this would 

require mechanisms by which the archetype and vintage of individual housing units 

can be automatically classified, Box 2.  
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Box 2: Automating spatial analysis 
Various attempts have been made to automate these classifications. Beck et al. 

(2020) used topographical data and an address database7, to train an algorithm 

to classify houses by their built form (archetype), while Rosser et al. (2019) 

trained an algorithm using a combination of topographical, digital surface 

model and site boundary data to classify houses by categories of age 

(vintage). Robinson (2019) describes the application of these techniques to 

model the energy performance of the housing stock in Nottingham, by 

classifying every house by its archetype and vintage and using this 

information to pair the house with an element of the synthetic stock. Once 

paired, any change to an element of the synthetic stock (e.g. to improve energy 

conservation or efficiency) can automatically be applied to the corresponding 

instances within the real stock.  

This approach is not perfect. The statistical techniques used are capable of 

predicting energy use at higher levels of spatial aggregation (e.g. at the scale of 

Lower-Layer Super Output Area of c.650 households or higher); therefore 

discrepancies at the scale of individual household are inevitable. However, such 

discrepancies could be avoided through crowdsourcing. For example, using a web 

app interface to a (sub-)national housing model, individual households could tune the 

characteristics representing their house to improve the fidelity of energy use 

predictions and to tailor the analysis of decarbonisation scenarios to their specific 

needs. In this way, a database of housing, household and tenure characteristics 

could be enriched. This in turn would enable accurate visualisation of housing 

inequalities and the targeting of spatially specific interventions to improve housing 

quality. This technique could also be matched with a Geographical Information 

System layer in which energy networks are represented, to help support 

infrastructure planning as well as to anticipate households’ heating system choices. 

Exogenous factors 

The issues discussed above relate to the relationship between housing archetypes, 

modes of tenure, and the composition of the households which inhabit houses in a 

particular area. These account for many of the factors influencing changes to the 

housing stock. However, these changes can assume that external climate conditions 

and infrastructure networks, including national power systems, remain constant over 

 

7 to identify addressable domestic properties 
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time. To ensure that D-HSEMs can adapt to changes in these conditions over longer 

timeframes, consideration needs to be given to these exogenous factors. 

This section therefore considers the following factors in relation to D-HSEMs:  

i) Future climate projections and the corresponding impacts on space 

heating and cooling demand as well as overheating risk; and  

ii) Decarbonisation of the power sector and the introduction of alternative 

fuels and their networks together with couplings to local energy (fuel/heat) 

networks.   

Future climate projections 

Global warming of between 1.5°C and 2°C will be exceeded during the 21st century 

unless substantial reductions in CO2 and other greenhouse gas emissions occur in 

the coming decades (IPCC, 2021).  Even under the optimistic scenario of the global 

achievement of net zero CO2 by 2050, it is very likely that medium term (2041-2060) 

warming will be in the range 1.2-2oC. This warming will have two consequences for 

building performance in the UK. It will reduce the demand for space heating and 

increase the risk of overheating and associated mortality, along with the likelihood 

that active cooling systems will be integrated into buildings, offsetting the reduction in 

energy use for heating.   

These effects can be accounted for in HSEMs by substituting the climate files that 

are inputs their underlying energy models or simulations with those that relate to 

future climate change scenarios. For example, using the now somewhat out of date 

(relative to current climate change projections) CCWorldWeatherGen tool. Outputs 

from model runs with projected climate conditions can then be compared to outputs 

using existing climate conditions to study how energy use may change in the future. 

To date the only study that has undertaken this analysis appears to be that of 

Figueiredo et al. (2020), supporting forecasts of electricity demand for housing in 

Portugal. The authors conclude that space heating is expected to decrease by 33%, 

while space cooling shows a possible 20-fold increase.  

Decarbonisation implications for energy systems  

To meet the UK’s commitment to become carbon neutral by 2050, the Climate 

Change Committee sets out a number of recommendations that have implications for 

this discussion: 

• Decarbonisation of the power sector; 

• Electrification of heating, in particular through widespread adoption of heat pumps 

and associated heat networks; 

https://energy.soton.ac.uk/ccweathergen/
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• Improvements in building energy efficiency; 

• Phasing out of gas networks or re-purposing them to transport hydrogen; and  

• Increased penetration of electrical vehicles and enlargement of charging 

infrastructure, combined with smart systems in homes (Climate Change 

Committee, 2019). 

The UK government has recently launched the Boiler Upgrade Scheme to accelerate 

the penetration of heat pumps or biomass boilers in homes in England and Wales 

through a one-off grant towards the purchase and installation cost. Biomass boilers 

are relatively expensive to buy and install (particularly if automatically-fed) and 

somewhat disruptive in terms of managing fuel deliveries and feeding the boiler, if 

manually fed. They are, however, competitive with gas in terms of running costs and 

do not compromise on distribution temperatures, so that indoor comfort is not 

compromised. For efficiency reasons, heat pumps on the other hand normally entail 

lower distribution temperatures, so that if the building is not simultaneously insulated, 

comfort and health can be compromised. Furthermore, electricity tariffs are several 

times higher than gas tariffs, so that ongoing energy costs are likely to be higher, 

potentially leading households to further compromise their comfort. Analysis of these 

subtleties requires transient energy simulation. 

As noted earlier, spatial modelling provides the possibility to match buildings with 

local infrastructure provision. This is important, as proximity to energy network 

infrastructure is a key determinant in heating system choices (Curtis et al., 2018). For 

instance, district heat systems where heating is provided through a centralised 

network would be more feasible in higher-density urban areas than in rural locations. 

Finally, increased use of electrical vehicles and battery powered home appliances 

presents the prospect of using batteries for local energy storage, with charging and 

discharging being controlled by smart home systems that respond to time varying 

electricity tariffs and/or the availability of locally generated electricity through solar PV 

or wind turbines for example. This opens the possibility of more generalised forms of 

ABM to enable these energy exchanges to be modelled (Sancho-Tomás et al., 

2017). 

Policy applications of D-HSEMs  

To date, the development and application of D-HSEMs has been undertaken by 

research organisations under the auspices of EU-funded research programs, through 

Horizon 2020, to support the achievement of the EU’s 20-20-20 targets: “reducing 

greenhouse gas emissions by 20% compared to 1990 levels, increasing the share of 

renewable energy use to 20%, and improving energy efficiency by 20 %” (European 

Environment Agency, 2021). This is estimated to have been achieved, and the EU 
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has now adopted a 55% net emissions reduction target by 2030. To this end, funding 

for the development and application of D-HSEMs to support member states’ 

achievement of this target is likely to continue under Horizon Europe. However, to 

date there is no clear evidence from the literature that this work has informed 

member states’ domestic policies.  

Critique of dynamic HSEMs 

D-HSEMs have thus far focussed primarily on the turnover and renovation of the 

housing stock from a life cycle perspective, combining embodied with operational 

energy use. Most studies have achieved this through dynamic material flow analysis, 

that represents housing turnover and renovation activity as a simple consequence of 

deterioration. However, the reality is more complex, with these decisions being 

influenced by many factors, including relocation decisions, household finances, the 

availability of infrastructure, perceived disruption and social influences. A small 

number of studies have attempted to embrace aspects of this complexity through 

SDM or ABM, to varying degrees of completeness and success. They have, in the 

main, been partial prototypes which:  

• Employ highly simplified statistical or physical models to estimate operational 

energy use;  

• Do not match housing with household structures and tenure;  

• Do not spatially disaggregate housing;  

• Do not consider, in any meaningful way, the (p)rebound effects arising from 

renovation activities; and 

• Largely ignore the exogenous factors that impact on housing energy use.  

 

In short, there does not exist a D-HSEM that comprehensively models the factors 

influencing the time-evolving carbon intensity of housing stocks and how this can be 

influenced through policy and regulation. In this context, it is important to note that 

the two studies that have considered future climates (Figueiredo et al, 2020) or 

spatial disaggregation (Robinson, 2019) have employed T-HSEM modelling 

techniques.  

Finally, no convincing attempt has yet been made to combine the benefits of D-

HSEMs with those of their traditional counterparts, with a view to embedding rigour in 

the simulation of operational energy use with a rigorous modelling of households’ 

investment decisions and how these impact on embodied energy use through the 

consumption of materials in construction and renovation.  



 

34 

 

Box 3: Comparing T-HSEMs and D-HSEMs 
• Traditional and dynamic HSEMs model the housing stock from opposing 

but complementary viewpoints.  

• T-HSEMs represent the stock as it stands now and test the impacts of 

assumed (or simplistically modelled) uptake of specific material or 

technology substitutions. 

• T-HSEMs focus particularly on the reduction of energy use to varying 

degrees of rigour.  

• D-HSEMs in contrast model how the stock might evolve (demolition, 

renovation, (re-)construction) over long timescales and what the life 

cycle impacts might be.  

• D-HSEMs are comparatively strong on embodied energy use, but model 

operational, or day-to-day, energy use somewhat simplistically. 

A combination of the virtues of T-HSEMs and D-HSEMs, using sound software 

design principles, would offer a powerful resource to policymakers. This could 

enable the carbon impacts of specific policy interventions to be revealed, and 

when and where they would be realised. This would considerably improve the 

quality of evidence underpinning housing stock decarbonisation policy. 

As discussed above, there are models or proposed models which respond to these 

criticisms and take into account the factors influencing changes in the housing stock 

and household composition. In particular, T-HSEMs utilising transient energy 

simulation can better capture indoor comfort conditions and can be adapted to model 

the impacts of future climate conditions. D-HSEMs using ABMs could model housing 

stock dynamics at a granular level, considering the factors influencing stock changes 

as well as the emissions associated with individual renovation decisions. To capture 

these advantages, a new approach to developing HSEMs will be required. In 

particular, uniting traditional and dynamic HSEMs could provide a comprehensive 

base with which to support future decarbonisation policy. 

Designing better HSEMs 

Developing new HSEMs, uniting the advantages of both traditional and dynamic 

models, needs to be long-range in scope if policies and strategies are to be effective 

in achieving 2050 decarbonisation targets. This evidence base is lacking at present 

and developing it will require a significant investment. Sound software development 

principles will help to reap and sustain the rewards from this investment as well as 
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offering opportunities to develop mechanisms that can support the straightforward 

definition of decarbonisation scenarios and the automated modelling of their impacts.  

HSEMs have thus far been developed in a largely ad-hoc way, mainly by academic 

and research organisations, in an environment which is not tailored to the production 

of commercial-strength software. As such the models tend to be used exclusively by 

these experts, with little regard for usability, longevity or transparency in their 

underlying assumptions. As well as limiting their use it also makes their update 

difficult. As Sousa et al. note, “current HSEMs are lacking in transparency and 

modularity, they are limited in their scope and employ simplistic models that limit their 

utility” (2018: 60). Furthermore, the scenarios that are modelled tend to be manually 

defined, making the process cumbersome and prone to error. This also means that 

an opportunity is lost to exploit the power that optimisation techniques present to 

search for identify policy interventions that minimise multiple objectives, including 

subsidy costs, carbon emissions, health and welfare inequalities.   

Any investment in new HSEMs would also benefit from a mechanism to quantify the 

impacts of uncertainties in the data and to determine how these uncertainties are 

amplified into the future (in much the same way that uncertainty bands in climate 

change projections enlarge with time).  

Following robust software engineering principles is important for achieving flexibility 

in the way the model can be used and updated. For example, structuring the 

software modularly enables new classes and methods to be added to increase the 

scope of software, or modes of calculation. In terms of simulation results, 

functionality can be developed to allow users to choose the degree of disaggregation 

at which they wish to analyse the energy and carbon performance of the housing 

stock. Good software design can also enable updates as new data becomes 

available. It is also good practice to have a well designed graphical user interface 

(GUI) and to make software openly available and accessible through a dedicated 

repository. The following three features have the potential to create a particularly 

powerful tool (see Annex 3 for more detail):  

Scenario definition and modelling: This could simply involve mechanisms to 

identify archetypes and vintages for which envelope elements or energy 

systems could be substituted. More powerful would be a hybrid of dynamic 

and traditional HSEMs to define policy scenarios and to evaluate their impacts 

on energy use, carbon emissions, comfort and health. This could also allow for 

the modelling of exogenous factors, such as power system decarbonisation, 

technology improvements or climate change.  
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Uncertainty analysis: This involves identifying the housing envelope, 

systems and behavioural parameters to which housing stock carbon emissions 

are most sensitive and their probability distributions. This enables the 

uncertainty distribution of future carbon emissions to be simulated.8    

Optimisation: Computational optimisation algorithms can efficiently search for 

a solution that optimises an objective function or combination of objective 

functions, such as cost, carbon emissions, comfort or health. This could be 

employed simply to identify optimal ERR strategies or the policy measures that 

could be put in place to stimulate these renovations.  

All three techniques could be combined to model and optimise decarbonisation 

scenarios, accounting for parameter uncertainties. This could be an incredibly 

powerful resource. 

  

 

8 In principle, this feature could be extended to also address uncertainties in exogenous factors such as those 
noted above.  
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Conclusion and 

recommendations 
HSEMs have considerable potential to underpin housing decarbonisation policy; to 

help to target subsidy, education and training programmes; and estimate the 

corresponding impacts on future emissions and employment (e.g. for heat pump 

installers). These models can also be used to support industry in identifying the 

potential market size for specific energy conservation and efficiency products and to 

correspondingly focus research and development efforts. They can also support 

utilities to anticipate and influence demands on local and national grids for heat, fuel 

and power through demand response to transient price signals.  

The development and application of HSEMs in the UK has been dominated by 

traditional HSEMs (T-HSEMs). The models can help to identify where the potential 

for renovation measures lies, for example by modelling substitutions of elements of 

the building envelope or energy system, and what the impacts might be, based on 

assumed levels of uptake amongst homeowners.  

In contrast to T-HSEMs that focus on identifying what is possible within the 

constraints of the current housing stock, D-HSEMs aim to capture the ongoing 

changes that occur in the housing stock by focussing on probable outcomes. These 

have the potential to be a powerful resource for policymakers, enabling them to 

estimate the likely economic and carbon impacts of their policies and strategies to 

decarbonise the housing stock. 

There is a need to unify the two main approaches to housing stock (energy) 

modelling, T-HSEMs and D-HSEMs, to support the analysis of policies that are 

formulated with long-term decarbonisation targets in mind. As the scale of 

transformation to achieve net zero is unprecedented and the housing stock is 

expensive and slow to change, it is important that decisions are made using evidence 

that is both rigorous and joined up. In common with Sousa et al. (2017), we assert 

that this should be achieved using sound software development principles to ensure 

the longevity, accessibility and usability of the developed modelling platforms.   

There is no single overarching tool that can model all the factors that influence the 

way in which housing stock and energy use interact and the resulting emissions. 

These include how the housing stock changes over time through renovation and 

demolition, and factors that influence renovation decisions; energy use including 

adjustments to maintain comfort; and exogenous factors that affect the need for and 
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source of energy. Generally, tools have been developed with specific housing stocks 

in mind, often using simplified models that are empirically tuned to these stocks, and 

as the underlying algorithms are lacking in transparency it is not easy to assess their 

ongoing accuracy or how easily the tools could be applied to other housing stocks.   

In England, CHM has been the most prominently used tool in recent years. However, 

it takes on the limitations of the BREDEM platform on which it is based and therefore 

does not respond to how housing stock and use changes over time. Since BREDEM 

has not been developed in a modular, transparent and openly accessible manner, its 

potential for further improvement is hindered. In contrast, the recently developed 

EnHub platform has been made freely available and offers opportunities for 

modelling, data and software updates to be developed and integrated. The state of 

the art in Wales, appears to be a simplified T-HSEM of the Welsh housing stock, 

drawing on EPC and WHCS data by Green et al. (2020). It is a useful model, but it 

has a number of limitations that undermine its usefulness and the reliability of the 

potential decarbonisation impacts of the renovation scenarios that it has been 

employed to study. In particular, it does not support direct analysis of the likely 

impacts of alternative decarbonisation policy measures.   

Recommendations 
Given the increasing urgency of developing evidence-based housing decarbonisation 

policies and strategies that are specific to Wales and the absence of a 

comprehensive HSEM for Wales, the following research, development and 

application priorities are recommended. They are organised by timing and likely 

length of the effort needed. They require an integrated approach to be taken across 

the Welsh Government, and a workflow to achieve this is presented in Annex 4. The 

workflow describes how these proposed short, medium and longer term 

developments would combine and complement one another and has the potential to 

produce a world leading D-HSEM platform which could guide the design and 

evaluation of the long range impacts of housing decarbonisation policy for Wales.  

 

Short term: Welsh Housing Model (T-HSEM) creation 

A quick win can be achieved by adopting EnHub (Sousa et al., 2018; 2020) and 

substituting the EHS dataset for England with the WHCS dataset, to create a Welsh 

Housing Model (WHM). This would support the transient energy simulation of a 

comprehensive synthetic stock, faithfully representing the heterogeneity of the 

housing stock in Wales. This would allow for the analysis of a greater range of 

renovation scenarios than has been possible to date, accounting for the 
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corresponding impacts on energy use, carbon emissions and indoor comfort. This 

initial version of the WHM would provide Wales with an internationally competitive T-

HSEM, on a par with the US ResStock platform.  

Medium term: T-HSEM enrichment 

The scope of the WHM could be enriched in the following ways over a three to five 

year period. These changes would create a world leading traditional housing stock 

energy modelling platform.  

Tri-dimensional archetyping: Combining datasets to develop a three-

dimensional matrix of archetype-vintage pairings, household archetypes (of 

demographic composition and socioeconomic circumstances) and housing 

tenure.9  

Spatial analysis: This could include the development and application of 

techniques to classify houses by their archetype-vintage pairing, tenure and 

household type; added to a national housing GIS database. An energy network 

layout could also be added as well as functionality to link each house in Wales 

with the corresponding WHM archetype and its attribution parameters. 

Visualisation and analysis of housing energy performance for Wales, both 

spatially disaggregated and aggregated, for example by municipal ward could 

be included.  

One significant outcome of the recommended spatial analysis capability is the 

geolocated identification of prospective renovation activity and the 

corresponding potential impacts on public financing, the local economy and 

employment with associated local economic multiplier effects. 

Behavioural modelling: This would involve integrating a multi-agent simulation 

platform such as No-MASS (Chapman et al., 2018) with EnHub and enriching 

this with a population generator to generate synthetic households from the 

household archetypes and their characteristics. This would enable household 

members’ activities and appliance ownership profiles to be modelled, together 

with their activity-dependent behaviours (e.g. using energy services, opening 

windows etc). It will also provide a rational basis for the future modelling of 

(p)rebound effects.  

Scenario analysis: Co-design of energy conservation and efficiency scenarios, 

with government, industry and academic stakeholders. This would involve the 

 

9 WHCS, AddressBase-Plus, Census, Experian Mosaic, Council Tax Band, Landlord Registrations. 
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testing of these scenarios and the analysis and visualisation of their impacts at 

differing levels of spatial granularity (feeding back into the identification of 

intervention scenarios). This would benefit from the addition of cost and 

embodied energy modelling functionality.  

Web interface / crowd-sourcing: The development of a web app interface to 

the WHM, providing homeowners with the means to analyse, update and test 

scenarios to improve the performance of their homes. This would need a 

mechanism to link archetypal data files with house-specific data files. It would 

also provide a mechanism by which the fidelity of the synthetic stock of 

archetypes could be enhanced, and a corresponding mechanism to periodically 

facilitate this.   

Longer term: D-HSEM creation 

In the longer term, we recommend augmenting the WHM with the features below. 

While these constitute a substantial investment in research and development and the 

use of high performance computing infrastructure, they have the potential to create a 

leading dynamic housing stock energy modelling platform. This recommendation 

combines the virtues of traditional and dynamic HSEMs in a comprehensive and 

rigorous way with which to thoroughly evidence housing decarbonisation policy and 

the spatial and temporal analysis of policy impacts. 

Population, relocation and deterioration modelling: The synthetic 

households developed above could be combined with statistical modelling of 

their changing circumstances (such as ageing and mortality, births, income) and 

analysis of how these impact on relocation decisions. National population 

forecasts, census and housing market data could be added to calibrate this 

modelling. Relocation decisions are one driver of renovation decisions, which 

are also impacted by the deterioration in the housing stock over time. This 

deterioration has been modelled at two levels of aggregation: the building (for 

demolition) and components of the fabric and systems (for renovation).   

Renovation investment decision modelling: Considering factors to determine 

the nature and scale of renovation activity such as deterioration of elements of 

the building envelope and systems (wear and tear to housing fabric) and 

changing household circumstances, input to agent-based investment decision 

modelling. In contrast to prior models, this should involve a mechanism by 

which elements that would benefit from being renovated are grouped and 

implemented as discrete jointly coordinated events.   
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Future climate modelling: Development of a utility to update the weather files 

that are inputs to the core energy simulation engine, accounting for future 

climate projections based on a chosen future emission scenario. 

Scenario modelling and optimisation: Combining scenario definition and 

modelling, uncertainty analysis and optimisation as outlined in Annex 3. 
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Nägeli, C., Jakob, M., Catenazzi, G., Ostermeyer, Y. (2020) Towards agent-based 

building stock modelling: bottom-up modelling of long-term stock dynamics 

affecting the energy and climate impact of building stocks. Energy and Buildings 

109763.  
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Annex 1: Glossary 
Archetypes: In this report, we take this to refer to classifications of the shape or form 

of a house, such as detached, semi-detached, terraced, flat or bungalow. In the 

housing modelling literature however, this term occasionally has a broader definition, 

including classifications of age (vintage here). For simplicity, we refer separately here 

to archetype (form) and vintage (age).  

Building envelope: the boundary between the interior and exterior of a building that 

facilitates indoor climate control. 

Energy conservation: In the context of this report, refers to the use of measures 

such as envelope insulation, draught exclusion and heat recovery to reduce the rate 

of heat loss from a house, so that heat (thermal energy) is better conserved.   

Energy efficiency: The efficiency with which energy is converted from one form to 

another, expressed as the ratio of the energy output (e.g. in Joules, J) to the energy 

input (J). For example, the conversion of chemical energy to thermal energy in a 

properly installed gas condensing boiler has an efficiency of 0.9-0.95.   

Energy efficiency is sometimes applied at the whole building level, so that the 

boundary is enlarged from the efficiency of a systems (e.g. a boiler) to also consider 

energy conservation by the envelope and the utilisation of ambient (e.g. solar) 

energy. This should more accurately be termed an energy performance rating.  

Energy related renovations: These may include insulating the walls, roof or floor, 

by substituting the glazing or by replacing the heating system with a more efficient 

one 

Energy use: The use of energy within the geometric boundaries of a house for the 

provision of energy services relating to heating, hot water, lighting and electrical 

appliances, accounting for (e.g. heating) system inefficiencies. This is distinct from 

end use energy demand (EUED), which neglects these inefficiencies. Energy use is 

sometimes confused with ‘energy consumption’, an incorrect term that implies that 

energy is lost (by being consumed), in contravention of the first law of 

thermodynamics.  

Housing stock energy models (HSEMs): Computer models that estimate national, 

sub-national or regional scale energy use in housing, typically through the 

representation of archetypes (e.g. mid-terrace, end-terrace or semi-detached, 
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detached, apartment), with predicted energy use from these scaled according to the 

total size of the stock that is represented by them. 

(P)rebound effects: Where occupants consume more (or less) energy than 

expected following from the implementation of an ERR. 

Renovation: The act or process of repairing and improving a building, to meet 

changing needs or circumstances.  

Stochastic models: Models that account for the probability of various outcomes, in 

particular with respect to occupants’ interactions with the building envelope and 

systems.  

Synthetic housing stock/households: statistically reduced representations of 

actual housing stocks/households. 

Vintage: Refers to classifications of the age of a house. For example, the English 

Housing Survey employs the following vintages: pre-1919, 1919 – 1944, 1945 – 

1964, 1965 – 1979, and post-1980.  
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Annex 2: Bottom up T-HSEM 

engineering models 
Bottom-up engineering models place a particular emphasis on heat flows. These 

heat flows can be represented schematically with the help of Resistor-Capacitor (R-

C) network diagram, Figure A1.  

Figure A1: Resistor-Capacitor network diagram of heat flows in a house with a 

single thermal zone 

Source: Kämpf and Robinson (2007) 

Analogous to an electric network, this diagram is comprised of a series of 

temperature nodes (T) that are connected to one another via resistances (K, UA), 

with some also associated with capacitors (C). Reading this diagram from left to right, 

an external air temperature node (Text) is connected to an outside surface 

temperature node (Tos) via a convective resistance (Ke) that represents the surface 

film resistance. Tos is also influenced by the net absorption of shortwave or solar 

(Qsun1) and longwave or infrared (Qir) radiation exchange. These radiative 

exchanges can in principle be influenced by adjacent buildings, for example by 

occluding views to the sun or sky. Tos is in turn connected to a wall temperature 

node (Tw), this time via a conductive wall resistance, representing the resistance to 

heat flow by the wall and any insulation that is integrated with it. This wall also has 

the ability to store (by elevating its temperature) and later discharge heat, so that it is 

also linked with a capacitance (Cw). In essentially a mirror image, this wall 

temperature node is linked by a similar conductive resistance to an inside surface 

temperature node (Tis), which is also influenced by internally absorbed shortwave 

and longwave radiation exchange; this latter representing the radiative part of internal 

heat gains. Tis is itself linked with an inside air temperature node (Ta) via an internal 

convective resistance. This internal air node is also influenced by internally 

transmitted shortwave radiation due to the convection of heat absorbed by glass 

(Qsun2·Wa), as well as by the convective part of internal heat gains (Lc) and 
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internally convected heating and/or cooling loads (H and C, though these may also 

be modified to contribute to Lr above, if some form of radiating surface is used as the 

medium for heating and/or cooling). The air node may also be associated with a 

capacitance (Ci), for example to account for the storage of heat by indoor air and 

furnishings. Finally, our indoor air node is also connected to an outdoor air 

temperature node, but this time represented by a variable resistance (UA) to 

represent the dependence of advective (ventilation and infiltration) heat transfers on 

temperature differences, wind speeds and the extent to which windows are open (or 

indeed to account for mechanical ventilation systems).  

This diagrammatic representation, and the underlying physical modelling, can be 

rendered more complex. For example, an explicit distinction can be made between 

the thermal effects of walls, roofs and ground floors; walls can be associated with 

orientation-sensitive radiative transfers and corresponding nodal temperatures; wall 

capacitances can be disaggregated to distinguish internal wall layers from external 

layers that are separated by insulation; additional thermal zones can be added, these 

being separated by wall resistances that can also be assigned a capacitance… etc. 

Indeed, dedicated transient building simulation programs, such as the widely used 

program EnergyPlus (Crawley et al., 2001) are designed to do just this; essentially 

translating a semantically enriched 3D representation of a building into an equivalent 

heat and mass flow network that transiently simulates the heat and mass flows 

through all key pathways in a building and the interdependencies between them. The 

housing stock energy hub (EnHub) platform (Sousa et al., 2018, 2020) employs 

EnergyPlus at its core.  

Alternatively, the schematic representation of Figure A1 and its underlying physical 

models can be further simplified. This is the approach adopted by the Building 

Research Establishment Domestic Energy Model (BREDEM) and all of its derivatives 

(Henderson and Hart, 2012), such as the Cambridge Housing Model (Hughes et al., 

2013). 

BREDEM-derived models are simplified bottom up engineering T-HSEMs. They are 

not transient as they do not support (sub-) hourly calculation of temperatures and 

related heat flows. Rather, they employ assumed indoor temperature set-points and 

an annual or monthly energy balance to determine the corresponding heat flows, as 

well as assumed (e.g. heating) system efficiencies to convert these into an energy 

use. In performing these energy balance calculations, total heat gains for the period 

from solar radiation and internal sources (lights, equipment and people) are 

estimated. In the case of solar heat gains, these are corrected, based on an estimate 

of internal thermal mass (light, medium or heavy weight), to account for the extent to 

which these might usefully offset the demand for space heating. This is achieved 

using a solar utilisation factor. Any un-useful gains are assumed to contribute to a 
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rise in indoor temperature above the assumed set-point. In a similar way, intermittent 

occupation and how this translates to discontinuous space heating practices are 

accounted for using a heating intermittency factor, which represents the discharge of 

heat from the building fabric, following a period its charging, when the heating system 

is respectively switched on and off again. So, whilst air and fabric temperatures are 

not resolved, the effects of internal thermal mass on the moderation of these 

temperatures and how this translates into the demand for space heating are 

accounted for, albeit in an approximate way.   

The external nodes Text are represented as monthly averaged rather than hourly 

temperatures. Fabric temperatures (Txs) are not calculated and internal 

temperatures (Ta) are assumed. Capacitances and how their behaviours influence 

transient fabric and indoor temperatures are not resolved, but their effects on heat 

flows are approximately represented. Since fabric (or surface) temperatures are not 

explicitly resolved, neither are the radiative processes that influence them. However, 

the transmission of solar radiation and its allocation to internal walls (and other 

surfaces) is accounted for in an approximate way (Qsun2.Ww), as are the 

contributions of internal heat gains (including from heating systems) to indoor air 

temperatures. Finally, the influence of advective heat transfers on indoor air 

temperature are also assumed, using scheduled infiltration and ventilation rates.  
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Annex 3: Software engineering 

principles 
Modern computer programming languages, such as C++ and Python offer the 

opportunity to improve modelling techniques, for example by social simulation 

modelling or life cycle analysis. Structuring the software modularly enables new 

classes and methods to be added to increase the scope of software, or modes of 

calculation. For some applications, rapid and approximate calculations may suffice, 

whereas for others, more computationally demanding and sophisticated modelling 

may be appropriate. Good software design provides for flexibility in results analysis, 

allowing users for example to choose the degree of disaggregation at which they 

wish to analyse the energy and carbon performance of the housing stock. It also 

provides the possibility to easily substitute datasets, as new data becomes available, 

so that the modelling platform can be easily updated.  

It is good practice to make software openly available and accessible through a 

dedicated repository (e.g. GitHub), enabling other researchers to contribute to and/or 

benefit. Making the underlying rationale and modelling algorithms freely available 

would also improve understanding of scope of applicability. BREDEM-based models 

are notorious in this respect, with many empirical expressions for whom the source is 

not declared.  

A well designed graphical user interface (GUI) which ensured productive and 

effective interactions with HSEMs would widen the pool of users beyond software 

developers. Although good GUIs are invariably developed by commercial software 

companies, excellent precedents do exist, such as the DesignBuilder interface to 

EnergyPlus; both the GUI and the simulation engine being leaders in their class.  

Scenario modelling and optimisation 

As noted earlier, carefully designed and executed modelling software brings a host of 

other opportunities, through additional functionality that sits at a hierarchical level 

above the core modelling and data management algorithms. The three most 

significant of these are explained below. Combining the three to model and optimise 

decarbonisation scenarios, accounting for parameter uncertainties would create an 

incredibly powerful resource.  
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Scenario definition and modelling: An HSEM GUI can in principle be 

extended to support the definition and subsequent automation of the modelling 

of scenarios. At the simplest level of T-HSEMs this could simply involve 

mechanisms to identify archetypes, vintages, envelope elements or energy 

systems, both conventional or renewable, that could be substituted. More 

powerful would be a mechanism to enrich a hybrid of dynamic and traditional 

HSEMs to define policy scenarios and potentially the timing of their 

introduction to evaluate the effects of these policies on energy use, carbon 

emissions, comfort and health. This in principle could also allow for the 

definition and modelling of changes to exogenous factors, such as power 

system decarbonisation, technology improvements or climate change. There is 

at present, to our knowledge, no example of such an HSEM scenario 

modeller.  

Uncertainty analysis: This involves identifying which housing stock carbon 

emission parameters are most sensitive and the definition of probability 

density functions describing them. Sampling methods can then be employed 

to quantify how these parameter uncertainties, and interactions between them, 

propagate through a simulation. Essentially then, this implies a shift from the 

prediction of single deterministic outcomes to distributions of outcomes, as in 

future climate projections. There are many instances of this being employed at 

the scale of individual buildings (e.g. Spitz et al., 2012, Lee et al., 2013); more 

recently combining energy simulation with stochastic behavioural modelling 

(Wate et al., 2020). However, this has not yet been employed at the (sub-) 

national housing stock scale.    

Optimisation: Computational optimisation algorithms can efficiently search a 

model’s parameter space for a solution that optimises a fitness (or objective) 

function or combination of objective functions, such as cost, carbon emissions, 

comfort or health. These are used to optimise the parameters of individual 

building designs, and more recently to optimise retrofit solutions for urban 

building stocks (Hey et al., 2020 and Thrampoulidis et al., 2021) but not yet at 

the (sub-)national scale using a bottom-up T-HSEM. However, multi-objective 

optimisation has been combined with uncertainty analysis at the national scale 

in conjunction with a top-down statistical model of the residential housing stock 

(Zhang et al., 2020). 
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Annex 4: Comprehensive D-

HSEM workflow for Wales 
The proposed short, medium and longer term research and development activities 

combine and complement one another to produce the D-HSEM workflow outlined in 

Figure A2 below, proceeding from top to bottom. 



 

57 

 

Figure A2: A dynamic housing stock energy modelling workflow for Wales 
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Initialisation: The survey data provides the inputs necessary to calibrate the 

recommended tri-dimensional archetyping of houses, households and the tenure of 

the houses they occupy. These are then matched, with the input of further (e.g. 

cadastral, tenure and census) data to actual houses, represented in a Geographical 

Information System. With further input through a web app from individual households, 

the statistically modelled characteristics of households and their houses can be 

refined, to minimise any errors in this modelling.  

Advanced T-HSEM simulation: The hourly energy performance of the refined 

archetypes can now be simulated using transient energy simulation techniques (as 

with EnHub and its use of the EnergyPlus simulation engine). By complementing this 

with agent-based modelling of occupants’ behaviours (e.g. of their use of windows, 

lights, appliances and heating and hot water systems), the indoor conditions and 

energy use can be reliably simulated. This combined energy-behaviour simulation 

repeats hour by hour, through to the end of the year, to produce annual energy, 

carbon, comfort and health metrics.  

Advanced D-HSEM: The simulation then advances by one year and the households’ 

demographic, social and economic circumstances are updated, as is the conditions 

of the homes they occupy. Using these updates together with the input of housing 

market data, some households may decide to relocate, causing an update to the 

matches between households and the specific property they occupy. Whether 

stimulated by housing relocation or not, households may then decide to renovate 

their homes, causing the energy and carbon impacts of the renovation activity 

(housing envelope products, lights, appliances and energy systems) to be calculated.  

Scenario modelling and exogenous factors: Energy supply system 

representations may then be updated. This may simply involve modifying a CO2 

conversion factor (converting electrical energy in kWh to CO2 emissions), but it could 

also involve linking houses with networks, such as district heating or Hydrogen. The 

total stock (both operational and embedded) energy and carbon emissions may then 

be updated. So long as we have not reached the end of our simulation timeframe 

(e.g. 2050), the time-dependent outcomes policy and regulatory scenarios, designed 

with appropriate stakeholder input, may then be adjusted. This may for example 

involve potential modifications to building regulations at certain time intervals, 

changes to subsidies or even assumed technological advances. Finally, the weather 

file that is input to the T-HSEM may be updated, reflection future emission scenarios 

and how these impact on global climate model simulations.  
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